M1.(a) Use of $\rho = RA / I$) cross sectional area= × $(3.7 \times 10^{-3})^2 = 4.3 \times 10^{-5} (m^2)$ ✓

 $\rho = \frac{3.3 \times 4.3 \times 10^{-5}}{1000} \checkmark = 1.4(2) \times 10^{-7} \checkmark \Omega \text{ m}\checkmark$

area : lose first mark if use diameter as radius or fail to convert to m² (if both errors still only lose 1 mark) CE area for next two marks but if uses diameter in place of area then lose first two marks if leave length in km lose 2nd mark but CE for answer UNIT stand-alone 4th mark

(b) (current in) steel wire (is less than the current in an) aluminium wire as it has a higher resistivity / resistance OR aluminium is better conductor ✓ the six aluminium wires are in <u>parallel</u> OR <u>total</u> cross-sectional area of aluminium is 6 times greater than steel wire ✓ each aluminium wire carries three times as much current as the (single) steel wire ✓

(c) resistance of 1 km of 6 Al cables in parallel = $\frac{1.1}{6}$ = 0.183 $\Omega \checkmark$

if ignored the steel wire then can score first and third mark

total resistance of the cable = $0.174 \ \Omega \checkmark$ power loss per km = 32.3 kW (or 30.7 kW if they ignore the steel) \checkmark OR power loss in 1 km of steel = $1.70 \text{kW} \checkmark$ power loss in 1 km each of Al cable = $5.11 \text{ kW} \checkmark$ total power loss per km = 32.4 kW (or 30.7 kW if they ignore the steel) \checkmark OR calculate current in steel wire and aluminium wire (22.7 and 68.2) \checkmark calculate power loss in aluminium wire and steel wire (1700 and 5115) \checkmark calculate total power loss (1700 + 6 × 5115 = 32,4 kW) \checkmark

if ignored steel wire range for third mark is 30 kW to 31 kW if wires treated as series resistors then zero

3

4

M2.D

M3.B

M4.D

M5.(a) (i) resistivity is defined as $\rho = \frac{RA}{l}$

where *R* is the resistance of the material of length $I \checkmark$ and <u>cross-sectional</u> area $A \checkmark$

2

(ii) <u>below</u> the critical temperature / maximum temperature which resistivity / resistance ✓
is zero / becomes superconductor ✓
Any reference to negligible / small / very low resistance loses second mark

2

(b) (use of
$$\rho = \frac{RA}{l}$$
)

 $\rho = 0.70 \times \pi \times 0.0005^{\circ} / 4.8 \checkmark = 1.1(5) \times 10^{-7} (1.1 - 1.2) \checkmark \checkmark \Omega \text{ m } \checkmark$ First mark for substitution R and I Lose 1 mark if diameter used as radius and answer is 4 [1]

[1]

[1]

[8]

4

M6. (a)	(i)	calculated cross-sectional area = 1.54 × 10⁻₅ (m²) or <i>correct substitutior</i>	1	
			C1	
		1.6 × 10⁻₃ (treating r as A) gains 2		
		into resistivity equation with incorrect powers of ten correct substitution	on	
			C1	
		into resistivity equation with correct powers of ten		
		0.73 (Ω)		
			A1	
				3
	(ii)	Sub into <i>I</i> ² <i>R</i> irrespective of power of 10 [ecf from (a)(i)]		
			C1	
		2.96 × 10⁻⁴ (W)		
			A1	2
				2
(b)	lin	e with positive slope (linear or curve)		
			B1	
	kne	ee and vertical line shown in first 2 / 3 on temperature axis		
			B1	
	res	sistivity falling to zero above 0 K		
			B1	3
				3
(c)	(w	ith no resistance there can be) <u>no</u> power loss		

M7.(a) (use of ρ =RA / I) R = 1.7 × 10⁻⁷ × 0.75 / 1.3 × 10⁻⁷ ✓ R = 0.98 Ω ✓ First mark for sub. and rearranging of equation. Bald 0.98 gets both marks Final answer correct to 2 or more sig. figs.

(iii) emf = $12 + 2 \checkmark \times 2.04 = 16.1 \lor \checkmark$ C.E. from (b)(ii) If only use one wire then C.E. for second mark

 (c) lamp would be less bright ✓ as energy / power now wasted in internal resistance / battery OR terminal pd less OR current lower (due to greater resistance) ✓ No C.E. from first mark

M8. (a) no resistance

(at or) below critical temperature

1

[9]

2

1

1

2

2

[8]

M1

2

alternative:

allow a labelled diagram which indicates features, allow T_o for transition temp in diagram

(b) Use

eg mri scanner, transformer, generator, maglev train, particle accelerators, microchips, computers, energy storage with detail

Reason

eg **strong** magnetic field, no energy dissipation (mri scanner / maglev / particle accelerator) higher (processing) speeds, smaller, no energy dissipation

(microchip / computer)

Β1

B1

smaller, no energy dissipation, no fire risk (transformer / generator) no energy dissipation (power transmission / energy storage with detail)

2

M9.

(a) correct substitution into $P = V^2/R$ (condone power of 10 error)

 $R = 2.62 (\Omega) = 144/55 = 12^2/55$

correct substitution into ρ = *RA/L* (condone error on R and/or power of 10 errors)

C1

resistivity = $9.9(5) \times 10^{-7}$ (range 9.9 to 9.95×10^{-7})

A1

C1

C1

				2.	5
	(b)	(i)	joules per coulomb (of charge)/work done per unit charge (treat reference to force as neutral)		
				M1	
			where charge moved (whole way) round circuit		
				A1	2
		(ii)	lost volts = 0.1 (V) or 0.1 seen as voltage		
				C1	
			$r = 0.011$ to 1.09×10^{-2} (Ω)		
				A1	2
(c) brightness decreases					
				B1	
		incre	ased current (in circuit/battery)		
				B1	
			ased lost volts leading to decreased pd across bulb or decre nal pd	eased	
				B1	3

B1